Search results for "positive-definite matrix"
showing 10 items of 22 documents
Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit
2019
Recently, a method was presented for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.
A SYMMETRIC AND POSITIVE DEFINITE BEM FOR 2-D FORCED VIBRATIONS
1997
A BEM formulation for 2D elastodynamics in the time domain has been presented. The formulation gives a resolving system that involves boundary displacements only. The stiffness and mass matrices of the boundary discretized body are frequency independent, symmetric and positive definite
POSITIVE DEFINITE FUNCTIONS OF DIAGONAL LIMITS OF FINITE ALTERNATING GROUPS
2004
The normalized positive definite class functions are determined for all those direct limits of finite alternating groups for which the embeddings are natural in the sense that every non-trivial -orbit in is natural.
From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture
2020
Abstract In this paper we study the joint convexity/concavity of the trace functions Ψ p , q , s ( A , B ) = Tr ( B q 2 K ⁎ A p K B q 2 ) s , p , q , s ∈ R , where A and B are positive definite matrices and K is any fixed invertible matrix. We will give full range of ( p , q , s ) ∈ R 3 for Ψ p , q , s to be jointly convex/concave for all K. As a consequence, we confirm a conjecture of Carlen, Frank and Lieb. In particular, we confirm a weaker conjecture of Audenaert and Datta and obtain the full range of ( α , z ) for α-z Renyi relative entropies to be monotone under completely positive trace preserving maps. We also give simpler proofs of many known results, including the concavity of Ψ p…
A General Algorithm to Calculate the Inverse Principal $p$-th Root of Symmetric Positive Definite Matrices
2019
We address the general mathematical problem of computing the inverse p-th root of a given matrix in an efficient way. A new method to construct iteration functions that allow calculating arbitrary p-th roots and their inverses of symmetric positive definite matrices is presented. We show that the order of convergence is at least quadratic and that adaptively adjusting a parameter q always leads to an even faster convergence. In this way, a better performance than with previously known iteration schemes is achieved. The efficiency of the iterative functions is demonstrated for various matrices with different densities, condition numbers and spectral radii.
Positive definite functions of finitary isometry groups over fields of odd characteristic
2007
Abstract This paper is part of a programme to describe the lattice of all two-sided ideals in complex group algebras of simple locally finite groups. Here we determine the extremal normalized positive definite functions for finitary groups of isometries, defined over fields of odd characteristic.
Size-intensive decomposition of orbital energy denominators
2000
We introduce an alternative to Almlöf and Häser’s Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will…
Direct Numerical Methods for Optimal Control Problems
2003
Development of interior point methods for linear and quadratic programming problems occurred during the 1990’s. Because of their simplicity and their convergence properties, interior point methods are attractive solvers for such problems. Moreover, extensions have been made to more general convex programming problems.
Lower bounds for eigenvalues of a quadratic form relative to a positive quadratic form
1968
Abstract : A method is presented for the calculation of lower bounds to eigenvalues of operators that arise from variational problems for one quadratic form relative to a positive definite quadratic form. Eigenvalue problems of this kind occur, for example, in the theory of buckling of continuous linear elastic systems. The technique used is a modification of one introduced earlier, (1) sections II and IVB, for the determination of lower bounds to eigenvalues of semi-bounded self-adjoint operators. Other methods for the latter problem can be carried over without essential changes. The particular difficulty in the case we consider is that some operators which enter the calculation for the lo…
A Positive Definite Advection Scheme for Use in Long Range Transport Models: Extension to Monotonicity
1992
Numerical modeling of atmospheric transport processes requires the solution of the continuity equation for prognostic variables such as momentum, heat, water vapor, liquid water or chemical species of the atmosphere. Although in the literature many advection schemes are known to solve this problem (Lax and Wendroff 1964, Crowley 1968, Tremback et al. 1987, Bott 1989a,b), these algorithms show different disadvantages, which sometimes yield undesirably poor numerical results. For instance, the upstream method is known to produce large numerical diffusion. The higher order versions of the advection schemes of Tremback et al. (1987) are much less diffusive. Unfortunately, the schemes are not po…